31. Bilangan Arah dan Cosiinus Garis. Sepasang bilangan berarah suatu garis adalah komponen-komponen skalar sembarang vektor (tidak nol) yang terletak pada garis itu.. Perhatikan G ambar 3.1 berikut :. Gambar 3.1.a. Dalam hal ini akan dicari bilangan arah dari garis g yang melalui titik P 1 (x 1, y 1) dan P 2 (x 2, y 2). Pasangan bilangan-bilangan berarah suatu garis lurus adalah banyak.
Sementaraitu, untuk mencari persamaan garis lurus sendiri terdapat dua cara. Pertama jika gradiennya diketahui dan garis melalui satu titik, kedua jika diketahui dua titik yang dilalui garis. Berikut rumus persamaan garis lurus: 1. Diketahui gradien dan satu titik yang dilalui garis, maka y - y1 = m (x-x1) 2.
Persamaangaris lurus yang melalui titik (x1,y1) dan titik (x2,y2) ini dapat dicari menggunakan rumus yaitu: Contoh Soal Persamaan Garis Lurus. Dibawah ini terdapat beberapa contoh soal persamaan garis lurus beserta pembahasannya: 1. Hitunglah persamaan garis lurus yang memiliki gradien -2/3 dan melalui titik pusat koordinat!
Solusingerjain latihan soal Matematika kelas 8 materi Persamaan Garis Lurus. Halo, pada soal ini kita akan menentukan persamaan garis yang melalui titik 4 koma min 3 dan tegak lurus dengan garis 4 y dikurang 6 x ditambah 10 sama dengan nol karena dua buah garis ini tegak lurus maka kita harus ingat. Bagaimana menentukan dua buah garis yang
MateriPersamaan Garis Lurus Sejajar Seperti yang telah kita tahu bahwa dua garis sejajar mempunyai gradien yang nilainya sama. Nilai gradien ini dapat digunakan untuk mencari persamaan garis lurus yang saling sejajar. Perhatikan gambar di bawah ini: Sifat Gradien Dua Garis Sejajar
Jikasebuah garis mempunyai persamaan ax + by = c, maka gradien persamaan garis itu ialah : c. Gradien garis melalui pangkal koordinat. Garis l melalui pangkal koordinat (0,0) maka garis l dan garis k sejajar, maka m l = m k. e. Gradien dua garis yang saling tegak lurus. Dua garis yang saling tegak lurus perkalian gradiennya adalah -1
. - Persamaan garis lurus adalah persamaan yang memuat satu atau lebih variabel, di mana masing-masing variabelnya berpangkat satu. Dilansir dari buku Cara Pintar Menghadapi Ujian Nasional 2009 2009 oleh Ruslan Tri Setiawan, jika diketahui dua titik yang berbeda misalnya titik A x1,y1 dan titik B x2,y2, maka dirumuskan Jika diketahui sebuah titik dan gradien garis, maka rumusnya Baca juga Cara Menggambar Grafik Garis pada Persamaan Garis LurusContoh soal 1 Tentukan persamaan garis lurus yang melalui titik A2,3 dan titik B1,6! Jawab Misalkan titik A sebagai titik pertama dan titik B sebagai titik kedua. Cara pertama Cara kedua Menggunakan y = mx+c y = -3x+c Dimasukkan titik 1,6 6 = = -3+c6+3 = c
Ilustrasi oleh Persamaan garis lurus adalah suatu perbandingan antara koordinat y dan koordinat x dari dua titik yang terletak pada sebuah garis. Sedangkan garis lurus sendiri yaitu kumpulan dari titik – titik yang sejajar dan garis lurus dapat dinyatakan dalam berbagai bentuk. Beberapa contoh penerapan persamaan garis misalnya seperti penghitungan sistem persamaan linear dua variable dengan menggunakan grafik menggunakan konsep persamaan garis lurus, percobaan pelemparan bola yang membentuk kurva persamaan kuadrat, dan mobil yang melewati lintasan berbentuk lingkaran persamaan lingkaran. Dibawah ini beberapa contoh untuk menyatakan persamaan garis lurus, yaitu y = mxy = -mxy = ax = aax + by = abax – by = -abdan lain-lain Bentuk Umum Persamaan Garis LurusPengertian GradienRumus Persamaan Garis LurusContoh Soal dan Pembahasan Bentuk Umum Persamaan Garis Lurus Bentuk umum persamaan garis lurus yaitu ax + by + c = 0. Persamaan garis lurus dapat dilukis dalam koordinat kartesius. Kemudian cara untuk menentukan persamaan garis dari suatu grafik pada koordinat kartesius, perhatikan gambar berikut Pada grafik di atas terdapat garis lurus yang melalui koordinat 0, 4 dan 2, 0. Persamaan garis melalui dua titik dirumuskan dengan Misalkan x1, y1 = 0, 4 dan x2, y2 = 2, 0 y – y1/y2 – y1 = x – x1/x2 – x1y – 4/0 – 4 = x – 0/2 – 0y – 4/-4 = x/22y – 4 = – 4x2y – 8 = -4x4x + 2y – 8 = 0 Persamaan garis tersebut dapat disederhanakan menjadi 2x + y – 4 = 0. Keterangan x, y variabelx1, y1; x2, y2 titik-titik yang dilalui oleh garis Cara cepat menentukan persamaan garis yaitu Mengalikan absis titik potong sumbu-x dengan y serta mengalikan ordinat titik potong sumbu-y dengan x dengan hasil merupakan perkalian absis titik potong sumbu-x dengan ordinat titik potong sumbu-y. Misalkan pada gambar di atas titik potong sumbu-x dan sumbu-y yaitu 2,0 dan 0, 4 sehingga menjadi 4x + 2y = 8 Jika kedua ruas dikurangi 8 diperoleh 4x + 2y – 8 = 0 dapat disederhanakan menjadi 2x + y – 4 = 0. Pengertian Gradien Gradien yaitu Perbandingan komponen y dan komponen x , atau disebut juga dengan kecondongan sebuah garis. Lambang dari suatu gradien yaitu huruf “m”. Gradien juga dapat dinyatakan sebagai nilai dari kemiringan suatu garis dan dapat dinyatakan dengan perbandingan Δy/Δx Perhatikan gambar dibawah ini untuk menentukan gradien pada sebuah persamaan garis berikut Berikut ini rumus mencari gradien garis dengan beberapa jenis persamaan Gradien dari persamaan ax + by + c = 0 Gradien yang melalui titik pusat 0 , 0 dan titik a , b m = b/a m = b/a Gradien Yang melalui titik x1 , y 1 dan x2 , y2 m = y1 – y2 / x1 – x2 atau m = y2 – y1 / x2 – x1 Gradien garis yang saling sejajar / / m = sama atau jika dilambangkan adalah m1 = m2 Gradien garis yang saling tegak lurus lawan dan kebalikan m = -1 atau m1 x m2 = -1 Rumus Persamaan Garis Lurus 1. Persamaan Garis Lurus bentuk umum y = mx Persamaan yang melalui titik pusat 0 , 0 dan bergradien m . Contoh Tentukan persamaan garis lurus yang melalui titik pusat 0 , 0 dan bergradien 2 ! Jawab y = mx y = 2 x 2. y = mx + c Persamaan garis yang / / dengan y = mx dan bergradien m Persamaan garis yang melalui titik 0 , c dan bergradien m. 0 , c adalah titik potong sumbu y . 3. Persamaan Garis Lurus Yang Melalui titik x1 , y1 dan bergradien m persamaannya yaitu y – y1 = m x – x1 4. Persamaan Garis Lurus Yang Melaui Dua titik yaitu x1 , y 1 dan x2 , y2 . Contoh Soal dan Pembahasan Persamaan garis yang melalui titik 3, 1 dan 2, 0 adalah Pembahasan Misalkan x1, y1 = 3, 1 dan x2, y2 = 2, 0 y – y1/y2 – y1 = x – x1/x2 – x1 y – 1/0 – 1 = x – 3/2 – 3 y – 1/-1 = x – 3/-1 -1y – 1 = -1 x – 3 -y + 1 = -x + 3 x – y – 2 = 0 Jawaban x – y – 2 = 0 2. Tentukan Gradien garis yang melalui titik 0 , 0 dengan titik A -20 , 25 ? Pembahasan Diketahui Titik 0 , 0 Titik A -20 , 25 Ditanya m = . . .? Jawab m = b / a = 25 / -20 = – 5/4 3. Tentukan persamaan garis lurus yang melalui pusat koordinat dan bergradien – 4/5 ? Pembahasan Diketahui Titik pusat koordinat 0 , 0 m = -4/5 Ditanya Persamaan garis lurus = . . .? Jawab y = mxy = -4 / 5 x-4y = 5x-4y -5y = 0 4y + 5y = 0 4. Persamaan garis lurus yang melalui titik 0 , -2 dan m = 3/4 adalah . . .? Pembahasan Diketahui Titik garis 0 , -2 m = 3 / 4 Ditanya Persamaan garis = . . .? Jawab Cara 1y = mx + cy = 3/4 x + -2 x4 4y = 3x – 8 -3x + 4y + 8 = 0 Cara 2y – y1 = m x – x1 y – -2 = 3/4 x – 0 y + 2 = 3/4 x x4 4y + 8 = 3x -3y + 4y + 8 5. Tentukan persamaan garis Z yang melalui titik 4 , 5 dan -5 , 3 ? Pembahasan Diketahui Titik A 4 , 5 Titik B -5 , 3 Ditanya Persamaan garis Z = . . .? Jawab Cara 1Langkah pertama yaitu mencari gradien terlebih dahulu m = y1 – y2 / x1 – x2m = 5 – 3 / 4 – -5 m = 2 / 9 Selanjutnya yaitu memasukkan ke dalam rumus Persamaan garis melalui titik 4 , 5 dan bergradien 2 / 9y – y1 = m x – x1 y – 5 = 2/9 x – 4 y – 5 = 2/9x – 8/ 9y = 2/9 x – 8 / 9 + 5y = 2/9 x – 8/9 + 45 /9y = 2/9x – 37 / 9 Cara 2Tanpa mencari gradien, yaitu dengan cara y – 5 / 3 – 5 = x – 4 / -5 – 4y – 5 / -2 = x – 4 / -9-9 y – 5 = -2 x – 4 -9y + 45 = -2x + 8-9y + 2x +45 – 8 = 02x – 9y + 37 9 2/9 x – y + 37 / 9 y = 2/9x + 37 / 9 Itulah pembahasan tentang persamaan garis lurus, baik dari bentuk umum, rumus, contoh soal beserta pembahasannya. Semoga bermanfaat! Referensi Persamaan Garis Lurus Persamaan Garis Lurus & Singgung Pengertian, Rumus, dan Contoh Soal
persamaan garis lurus yang melalui